
The study carried out showed that with reaction of converging conical SW in porous speci- 
mens of aluminum, magnesium, graphite, and mixtures of aluminum with iron and aluminum with 
potassium iodide, a Mach reaction is observed. In the test arrangement used with porous iron 
specimens no stationary Mach disk was established, and apparently this is connected with the 
insufficient height of the shell. 

In the case of Mach reaction there is an increase in pressure transmitted to the plexi~ 
glas barrier with an increase in specimen porosity and a reduction in Mach disk size. 
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PROPAGATION OF A SPHERICAL WAVE IN NONLINEARLY 

COMPRESSIBLEAND ELASTOPLASTIC MATERIALS 

B. Donaev, N. Mamadaliev, and A. I. Yusupov UDC 539.374:534.1 

The problem of spherical wave propagation in soil under the action of an intense 
uniformly decreasing load c0(t) applied to the boundary of a cavity with radius 
r0 is considered. Soil with a high stress level is modeled either by ideally 
nonlinearly compressible or elastoplastic material, taking account of linear 
irreversible unloading for the material~ In contrast to [1-7], in order to 
describe material movement use is made of strain theory [8] with determining 
functions c = c(e), c i = ci(si) , where e, si, c, c i are the first and second 
invariants of strain and stress tensors. During material loading these func- 
tions are presented in the form of polynomials 

in which constant coefficients ~i, ~i (i = i, 2) are determined by experiment, 
taking account of the triaxial stressed state of soil. Solution of the problem 
is constructed by an analytically reversible method, with prescribed shape for 
the shock-wave (SW) surface in the form of a second-degree polynomial relating 
to time t and a numerical method of characteristics for a prescribed arbitrarily 
decreasing load c0(t). On the basis of the analytical equations obtained, 
calculations are carried out for material parameters (including loading profile) 
in a computer and stresses and mass velocity of plastic and elastoplastic materials 
arecompared. 

This work is a continuation of [9, !0] for studying the characteristic features 
of spherical wave propagation in soils and the behavior of its parameters with 
intense effects. 

I~ Let at the boundary of a spherical cavity r = r0 a uniformly decreasing load c0(t) 
be applied. In the case of considering the problem within the limits of a nonlinearly 
compressible material with fulfillment of the first expression (0.i) taking account of 
o(e) = ~r =a~ = a0e =--p, ~ = (~ --po/p)~0 (p is pressure,p 0 is initial material density), 
a spherical SW r = R(t) will propagate in the soil, at whose front the soil is instantaneously 
loaded in a nonlinear fashion while beyond it in the region of disturbance there is 
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material unloading. Then from equations of motion, material continuity and state [9], we 
have an equation relating to mass velocity u(r, t) 

O~u ~a~u 2 ~ (ou u) -- c~ Or-- ~ ~ -- 7 = 0,: 

taking account of the relationship at the front r = R(t) and the first equality (0.I) with 
prescribed R(t) = dR/dt (in this case all of the material parameters at the SW front are 
known time functions) is resolved in the form 

(1.1) 

u (r, t) = ~ r ( r 1 6 2  
r 0 r 0 r~ r 0 ~ 

eo k [F (~,)] ii [F (r R IF (~,)1 d~, - -  ~ t "o ",,. .~o 
- - ~  - a~[F(r l 

r 0 
' r-t-ep$ r R[F(~,2) ~--"p r (~2) 

- J' at, r  ( t , ) a t , - -  
r o re "r e 

r + e p t  ~3 . 

P0 (~)1 ii [F (~,)] R [F(r at, + ml%t + nl],: --~ ! dtaY RtF A , [ F ( [ 2 ) ]  

r 0 . 

A ,  (t)  = V (~ - = ' /~ ' )~  po k'. (t) - =,, ~ ] f ~ / p ; , ,  

where E i s  the tangent  o f  the s lope of  the  branch of  the un load ing  diagram p--s w i t h  a x i s  
0~; Cp is the disturbance propagation velocity in the unloading region; m I and n I are 
constant coefficients determined from the condition at the wave front with t = 0; r 
is a known function depending on materialparameters at the SW front; F(zi~2) is the root 
of the equation R(t) + Cpt = zi,2 relating to t. 

Taking account of the boundary condition for the problem p(r0, t) = a0(t), we inte- 
grate the equation of material movement [9] for r from r = r 0 to r = R(t). Then in order 
to determine the load o0(t) taking account of (i.i) 

R~t) 
~ Ou (r, t) dr, ~o ( t) = p* (t) + Po "gf 
r 0 

where p*(t) is material pressure at the front r = R(t) which with precribed R(t) is assumed 
to be a known value. It is noted that in this case the rule for material unloading 

p(r, t) = p*(t) = Z(e - -e*)  

makes it possible to determine volumetric strain e(r, t). 

2. We solve the problem within the limits of elastoplastic strains using strain 
theory for soil plasticity [8]. Then a study of the material movement equation 

02u 0~,.,. " (~" - -  %r (2 1) 
Po ~ = -~r .+ 2 r 

taking account of the relationship between stress and strain components 

~rr = ~ S + 2 G e ~ '  %~ = a o e = ~ s ,  
e = Ou/Or q- 2u/r, ~ = ~/s - -  (2/9)(bias, G = ( i /3)~/e~ 

( 2 . 2 )  

and (0.I) indicates that with a= - (8/27)62 > 0 an SW r = R(t) propagates in the soil, but 
with ~2 - (8/27)62 < 0 Riemann centered loading waves, which from above intercept the un- 
loading wave t = f(r), are boundaries for the region of material loading and unloading. 

Since a spherical SW is a loading-unloading wave and behind its front there is material 
unloading, then from (2.1), taking account of the llyushin unloading theorem expressed by 
the equation 
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z~ = o , r  (r) + ~o (s - -  e* (r)) + 2G o (err - -  e .  (r)) ,  

~++ = z$+ (r) + ~o (e - -  s* (r)) + 2G o (%+ - -  e* (r)),. 
(2.3) 

we obtain 

ainu ~f~u 2 (OU i)Q(r)] 

O(0 w [ ~ r ( ~ ) -  (")] + (~;(~)-%+ - ' = Po~o~" (~) - 2Co+* (0] 

2 2 t 
poao = ~'o + 2Go, go ---- E1 --  ~ E2+ Go = -~" E2, 

(2.4) 

( 2 . s )  

where E l and E 2 are tangents for the slope of unloading branches respectively for the o(c) 
and ai(e i) diagrams with axes e and ei; u is displacement; material parameters relating to 
the front are labeled with an upper asterisk. 

We now consider the case of ~2 - (8.27)~ > 0 with conditions at the wave front and 
cavity boundary: 

$ ~ * �9 , 

~rr = - -  poR (t) u+, u t  = - -  B (t)errt U* (r~ t) = 0 np~ r = R (t); ( 2 . 6 )  

~ r = - - % ( t )  n p ~  r = r o, t ~ O  (u t = Ou/Ot = u ,  B ( t )  = O R / O t ) .  ( 2 . 7 )  

Solution of the problem is built up by the reverse method. Let R(t) be given, then (2.6) 
taking account of (2.2) with r = R(t) takes the form 

Po~2(t)--(al+ 94--'~I) , 

e*(t) = e ~ ( t ) = - -  " , , u t  = - -  R(t )  e* (t). ( 2 . 8 )  

By using the d'Alembert equation we obtain a solution for Eq. (2.4) 

u (r, t) --- +' (" - %') + r (~ + %0 _ * ( " -  %0 + r (" + %0 
r r $ 

r + P 

3 (~o -~- 2Go) O (r) d r  + 3 (~+o A- 2Go) r ~ o (r) r 3 d r  
r O r 0 

(2.9) 

(~ and r are unknown functions). 

By substituting (2.9) in (2.8) we obtain expressions for determining the functions 
and ~, which are reproduced due to their bulk. After this, solution of the problem 

relating to displacements u(r, t) is written as 

[ ~-aot ~2 

u (r, t) = u 

I+, r 0 r 0 

R(F2(+")? aOF2(+2) r+a~ R (F 2 (~2)) d~ 2 R(F2(+~)) 

d~ % (h) e h  + o (% + 2ao) 
r 0 r 0 r 0 

. +~ + c+'. i (-,-7,,+-] + '+0] } _ 
( r -ao t  " t;s ~ 

r+aot 

r D 

Q (i~) R i  - 
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(% - (s/27) I+~) [ p~ (o) - -  

(2.10) 
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ro ro ,to t 
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(2.10) 

where Fi(z i) (i = i, 2) is the root of equations R(t) ~ a0 t = z i relating to t; ~2(z) is a 
known function of its argument which is expressed in terms of material parameters at the SW 
front. 

By differentiating (2.10) for t and r we determine mass velocity ut(r, t) and strain 
E(r, t), and then on the basis of Eq. (2.3) stress components Orr , and %r are calculated. 
Furthermore, by substituting (2.3), taking account of (2.10) in (2.7), we find the loading 
profile o0(t). 

3. In order to solve the spherical elastoplastic problem by the characteristic method, 
introducing the notation 

ut.= OulOt, ~r~ = OulOr 

from (2.4) we obtain a system 

au t .[as" 2 (a, _ _ ~ ) +  Q(r)],-g-P'r = out ae,, (3.1) 

If it is considered that at the front r = R(t) the displacement u(r, t) = 0, then the 
system of Eqs. (3.1) permits the following equations for characteristics and ratios in them: 

r~,z = =F ao, du = u~dt + e , ,dr ,  

dut a ' r 2  Q(r)]dt'r'~ds,,=O. 
- L7 g-) + ooo---il 

(3.2) 

Oh the basis of (3.2) and taking account of (2.2), (2.3), (2.6) and (2.7) a scheme for working 
out the problem similar to the numerical scheme in [ii] is developed, and calculations 
were carried out in a computer for a specific soil structure. 

4. Calculations were carried out for the case when the shap@ of the SW surface was 
given as a second-degree polynomials R(t) = r0 + Rzt - (R2/2)t 2, R(t) > 0 with initial soil 
parameters: P0 = 0.02"104 kg'sec2/m4, g0(0) = 105"104 kg/m ~, ra = i m, R= = 2-102Rz, =I = 
12.127"104 kg/m2, ~2 = 58.73"i0v kg/m2, 61 = 35.83"106 kg/m=, 62 = Ii-64"I0S kg/m=, El = 
14"10 ~ kg/m 2, E= = 2-10 kg/m 2. 

Results of the calculations in a computer are presented in Figs. 1-4 for stresses, mass 
velocity, and loads in relationtotime and spatial coordinate r, and also at the S@front 
r = R(t). Here broken and solid lines correspond toideal Inearly compressible and elasto- 
plastic materials. Calculations with t = 0 taking account of relationship (2.6) in the case 
of fulfilling the boundary condition oft(r0, 0) =-'p(r0, 0) = -o6(0) = -105 kg/cm 2 indicate 
that the SW velocity R(0) = R~ is different for linearly compressible and elastoplastic 
materials, and it is Rl = 391 and 420 m/sec. 

Consequently, the reason for elastoplastic material disturbance becomes more extensive 
than the reason for disturbance of an ideal nonlinearly compressible material. 
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It can be seen from Fig. i (r = r 0 = i) that in the case of modeling soil by a non- 
linearly compressible material compared with the elastoplastic problem, solutions found by 
the reverse method for loading profile a0(t) vary comparatively slowly with time, and with 
t > 0 the absolute value is of greatest importance. This is explained by the fact that in 
considering the problem within the limits of a nonlinearly compressible material the soil 
is compressed by the same pressure from all sides, whereas in using dynamic plasticity 
theory arr > o## = o80 and the damping process for o0(t) in the latter proceeds compara- 
tively rapidly. In addition, all of the material parameter with r = r 0 in relation to t 
have a damping character. 

A similar rule for the change in parameters Orr = -p, o~, u t = u with time is ob- 
served with r > r 0. However, with r > r0 the intensity of the above-mentioned parameters 
is somewhat less than with r = r 0. 

Curves presented in Figs. 2 and 3 indicate that qrr and u t, depending on spatial 
coordinate r with fixed instants of time t = 0.15"I0-~; 0.30-10-3; 0.45"10 -3 (lines 1-3 in 
Fig. 2), with the exception of qrr for an elastoplastic material (solid line in Fig. 3) 
change mainly by a linear rule. In addition, stress Orr calculated for an elastoplastic 
material is least in absolute value. This picture occurs with a change in stresses 
~*rr and o$~," and mass velocity u t along the wave front in relation to time (Fig. 4). 

With the aim of comparing the results of analytical and numerical methods, the method 
of characteristics was used in a computer to resolve the problem for spherical-wave 
propagation in soil for load o0(t) obtained previously by the analytical reverse method 
(see Fig. i, solid line). By comparing the results of calculations for distribution of 
material parameters along the SW front, it is noted that results of the characteristic 
method (broken-dotted line in Fig. 4) agree satisfactorily with the analytical solution of 
the problem. 
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Thus, if spherical SW front velocity is prescribed in the form of a uniformly decreasing 
function of time, then all of the material parameters in the disturbance region, including 
the loading profile at the cavity boundary, also take on a deteriorating function with time. 
Stress components and mass velocity for the material at the cavity boundary with the passage 
of time fell more rapidly than at the wave front. With an increase in coefficients ~, ~=, 
~i, and ~2 the stress components increase, and with an increase in Young's moduli E I and E= 
they decrease. However, the effect of E 2 on the distribution of material parameters is 
weaker than for E l . 

The authors express their sincere thanks to Kh. A. Rakhmatulin fordiscussing the results 
of this work. 
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